CARBONYL DERIVATIVES OF 2-ARYLTHIOPHENES

V. K. Polyakov, Z. P. Zaplyuisvechka, and S. V. Tsukerman

UDC 547.733.734:543.422

The reaction of 4-R-benzenediazonium chlorides (R = H, CH₃, CH₃O, Cl, Br) with thiophene (Gomberg reaction) has given 2-arylthiophenes, which have been converted by Vilsmeier formylation into 5-arylthiophene-2-carbaldehydes (Table 1), as described by Demerseman et al. [1]. The latter, on condensation (methanolic solution of caustic soda, 45-55°C) with acetophenone has given chalcone analogs (Table 2):

$$R \longrightarrow R \longrightarrow S \longrightarrow CHO \longrightarrow R \longrightarrow S \longrightarrow CH = CHCOC_6H_5$$

Previously, 3-(5-phenyl-2-thienyl)-1-phenylprop-2-en-1-one (VI) has been described [2] with a yield of 51% and mp 110-112°C. The structure of the compounds obtained has been confirmed by UV and IR spectroscopy. The electronic spectra showed that the thiophene ring is a better transmitter of electronic influences than a 1,4-phenylene system.

TABLE 1. 5-Arylthiophene-2-carbaldehydes (I-V)

Com-	R	Mp,	Empirical formula	for	s. % ind	cal- culat- ed	Yield,	λ _{max} , nm (log ε) (in ethanol)	
I III IV V	H¹ CH₃ CH₃O Cl Br	90 93 116 87 114	C ₁₁ H ₈ OS C ₁₂ H ₁₀ OS C ₁₂ H ₁₀ O ₂ S C ₁₂ H ₁₀ ClOS C ₁₂ H ₁₀ BrOS	15,9 14,9 14,1 11,8	16,3 15,0 14,2 12,1	15,8 14,7 14,4 12,0	87 83 85 81 80	231 (3,96) 235 (4,00) 241 (4,00) 235 (4,01) 237 (4,00)	332 (4,33) 335 (4,37) 350 (4,30) 331 (4,34) 331 (4,38)

TABLE 2. 3-(5-Aryl-2-thienyl)-1-phenylprop-2-en-1-ones (VI-X)

Com-	R	М р, °С	Empirica l formula	s, %		cal- culat- ed	Yield,	λ _{max} , nm (log ε) (in ethanol)	
VI VII VIII IX X	H CH₃ CH₃O Cl Br	122 132 149 153 166	C ₁₉ H ₁₄ OS C ₂₀ H ₁₆ OS C ₂₀ H ₁₆ O ₂ S C ₁₉ H ₁₃ ClOS C ₁₉ H ₁₃ BrOS	10,7 10,2 10,0 8,7	10,6 10,3 10,1 8,8	10,5 10,0 9,9 8,7	98 97 98 99 98	270 (4,12) 273 (4,14) 282 (4,16) 272 (4,13) 268 (4,52)	378 (4,48) 387 (4,47) 397 (4,43) 382 (4,50) 381 (4,65)

LITERATURE CITED

- 1. P. Demerseman, Ng. Buu-Hoi, and R. Royer, J. Chem. Soc., 4193 (1954).
- 2. A. E. Lipkin, N. I. Putokhin, and S. I. Borisov, Khim. Geterotsikl. Soedin., 1021 (1967).

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

A. M. Gor'kii Khar'kov State University. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 136-137, January, 1974. Original article submitted May 29, 1973.